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Abstract

The pharmaceutical industry is increasingly aware of the advantages of implement-
ing a quality-by-design (QbD) principle, including process analytical technology, in
drug development and manufacturing. Although the implementation of QbD into
product development and manufacturing inevitably requires larger resources, both
human and financial, large-scale production can be established in a more cost-
effective manner and with improved efficiency and product quality. The objective
of the present work was to study the influence of particle size (and indirectly, the
influence of dry granulation process), and the settings of the tableting parameters
on the tablet capping tendency. Artificial neural network and fuzzy models were
used for modelling of the effect of the particle size and the tableting machine set-
tings on the capping coefficient. The suitability of routinely measured quantities for
prediction of the tablet quality was tested. The results showed that model-based
expert systems based on the contemporary routinely-measured quantities can sig-
nificantly improve the trial-and-error procedures, however, they cannot completely
replace them. The modelling results also suggest that in cases where it is not pos-
sible to obtain sufficient number of measurements to uniquely identify the model,
it is beneficial to use several modelling techniques to identify the quality of model
prediction.

Key words: Dry granulation, Tableting, Capping, ANN, Fuzzy models,
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1 Introduction

The pharmaceutical industry recognises the advantages of adopting the quality-
by-design (QbD) principle together with process analytical technology (PAT)
in drug development and manufacturing [1, 2]. Although the implementation
of QbD and PAT may be more expensive during product development, large-
scale production can be established in a more cost-effective manner and with
improved efficiency and product quality. The final goal of PAT is completely
automated production, where each significant step is closely monitored and
controlled, resulting in the highest possible quality of the product with mini-
mal or no control of the finished product. The main advantage of PAT is its
flexibility and ability to immediately adapt to new situations in the process,
since the system can detect production deviations and react by adjusting the
appropriate process parameters before the deviations can affect the quality of
the product.
Tablets are the most common pharmaceutical dosage form. They are produced
by compressing a powder mixture containing the active ingredient and auxil-
iary materials into a solid form. The tablet quality can be described by several
parameters such as: accurate tablet mass, hardness, thickness and friability
with minimal variations of results. Capping is one of the common techno-
logical problems during tableting. It can occur if the intensity of the elastic
relaxation overcomes the strength of the inter-particulate bonding formed dur-
ing compression, leading to separation of the upper part of the tablet from
the tablet body. Capping is a serious problem affecting the tablet’s mechanical
strength and its quality [3].
Many studies on the relationship between the powder’s mechanical charac-
teristics, the cohesion, the deformation mechanisms and the elastic recovery
of the tablet have been performed in the past [2, 4–14]. However, real mul-
ticomponent mixtures of ingredients were rarely evaluated in the published
studies. Real pharmaceutical formulations and production equipment are usu-
ally complex and practical experiences show that applying models developed
in laboratory-scale studies, i.e., [15–18] for large-scale production situations
often give unsatisfactory results. The mechanical properties of powder mix-
tures with a large number of components are too complex to be described in
a transparent mathematical model based on theory, thus the mathematical
models developed in [4–14] are often not precise enough for the purpose of
adjusting the parameters of a tableting machine to inter-batch differences.
The objective of the present work was to study the influence of particle size and
the process parameters on the tablet capping tendency. Indirectly, the influ-
ence of dry granulation process on the capping tendency was studied through
its influence on particle size distribution. We investigated the use of artificial
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neural networks (ANNs) and fuzzy models for the prediction of the capping
coefficient from the routinely measured mechanical properties of the powder
mixture and the tableting machine’s settings. For the model development we
used the capping coefficient (CC) data of tablets produced from powders with
different mechanical properties but with the same composition. Model tablets
were produced using several different settings of the tableting machine. We
also evaluated the efficiency of both model types for the optimisation of the
tableting parameters for the known properties of a powder batch as a part
of an expert system. The implementation of the expert systems can be very
suitable for a better understanding of the process and as a basis for controlling
the process in the PAT system [2].

2 Materials and Methods

The method for optimising the tableting process using two different mathe-
matical models (ANN and fuzzy) was developed and tested on a high-capacity
Killian T300/40 rotary press with formulation containing high amount of ac-
tive ingredient which exhibits poor flow and compressibility characteristics
and intensive capping tendency. A dry granulation of this formulation led
to a larger particle size, improved powder flowability, better compressibility
properties and a significantly lower capping tendency [19]. Optimisation of
tableting setting parameters such as main pressure, pre-pressure and tableting
speed can additionally contribute to minimisation of capping tendency. The
data was organised in a matrix where each column represented one measured
quantity and each row represented one tablet type. The following quantities
were measured for all 76 tablet types: powder distribution over eight particle
size ranges (d1 - d8), main compression force (F), pre-compression force (f),
tableting speed (v), and CC. For the model’s evaluation a quality-correlation
coefficient R2 was used:

R2 = 1 −
SSEM

SSET

(1)

where SSEM is the sum of the squared error between the model prediction
and the target, and SSET is the sum of SSEM and the average of the target
values.

2.1 Production of Model Tablets

In order to study the influence of the particle size distribution of powder
mixtures on tablet quality, three types of powder mixtures for tableting were
prepared:
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a) powder mixture for direct tableting (Type: Direct - 1 sample),
b) powder mixture prepared by slugging (dry granulation on a rotary tablet

press), using different setting parameters of tableting speed and compres-
sion pressure (Type: Slugging - 4 samples - see Table 1),

c) powder mixture prepared by dry granulation on a roller compactor using
different parameters of compacting speed and pressure (Type: Roller -
4 samples - see Table 1).

[Table 1 about here.]

The qualitative and quantitative compositions of all the powder mixtures
were the same: active ingredient (M-112, provided by KRKA, d.d., Novo
mesto), 75% (w/w), microcrystalline cellulose (MCC, Avicel PH 101, FMC,
Germany), 15% (w/w), cation exchange resin - Amberlite IRP88 (Rohm and
Haas, France), 5% (w/w), talc (Luzenac val Chisone SPA, Italy), 4% (w/w),
magnesium stearate (Faci SPA, Italy), 1% (w/w). Drug, MCC and half of the
quantities of talc and magnesium stearate were used intragranulary. The rest
of talc and magnesium stearate and the whole quantity of Amberlite were
admixed extragranulary to the milled and sieved dry granulate. Milling and
sieving of the compacts were performed on the Quadro-Comil U20 machine
(Quadro, Canada) using a 1.5-mm sieve. Each powder type was characterised
with a particle size distribution based on a sieve analysis (Alpine 200LS-N,
Hosokawa, Germany) using the following sieve ranges: 0-0.045mm (d1), 0.045-
0.071mm (d2), 0.071-0.125mm (d3), 0.125-0.25mm (d4), 0.25-0.5mm (d5), 0.5-
0.71mm (d6), 0.71-1.0mm (d7), and 1.0-1.25mm (d8). Each powder type was
characterised by the proportion of particles belonging to each particle size
group (wi). All powder mixtures were compressed into tablets on a Killian
T300/40 (IMA, Germany) rotary tablet press equipped with round, concave
punches (Φ=13 mm, R=26 mm) using different combinations of parameters
settings: the main compression force, the pre-compression force and the tablet-
ing speed (Table 2). The tablet mass was 0.550 g. Due to the high weight
fraction of M-112 in the tablet formulation, the particle size distribution of
mixture Direct closely resembles the particle distribution of the plain drug
(M-112). Approximately 85% of the particles in Direct are < 0.071 mm, the
compactibilitiy slope is 1.63 · 10−2

± 9.60 · 10−4, and the crushing strength of
tablets made of pure M112 is 98.37 N ± 5.09 N. Detailed analysis of physical
properties can be found in [19].

[Table 2 about here.]

Nine powder mixtures (Direct - 1 sample, Slugging - 4 samples and Roller -
4 samples) were compressed at different combinations of parameters settings
during the tableting (process parameter combinations 1.-8.). Mixture Direct
was compressed also using process parameter combinations 9. - 12. We pro-
duced 76 types of tablets, and a sample of 10 tablets was evaluated from each

4



ACCEPTED MANUSCRIPT 

tablet type.
The tablet types were evaluated in terms of a capping coefficient (CC) during
the tablet crushing strength testing. The tablet was considered to have a cap-
ping tendency if the upper part of the tablet completely fell apart from the
tablet body during crushing strength testing or if typical relief (a significant
step form) appeared on the fractured surface of the tablet, which would indi-
cate that there is a large probability that the tablet would break later during
the subsequent steps in production [19]. The CC was calculated as a fraction
of the tablets with a capping tendency compared to the whole tested number
of tablets.
The CC of each tablet type was analysed in accordance to the following exper-
imental values: compression parameters settings (the main compression force,
the pre-compression force, the tableting speed) and powder mixture param-
eters: the Carr index (CI) and the median of the particle size distribution
(p) of the powder. The Carr index is a well-established index for describing
the compressibility of powders [9] as it represents a measure for volume re-
duction. The median of the particle size distribution represents a statistically
calculated descriptor of powder type based on particle size distribution of the
powders involved in the study.

2.2 Principal component analysis

The dimensionality of the problem, can be identified using principal compo-
nent analysis (PCA) [20]. PCA calculates linear combinations of regressors,
called the principal components, in such a way that the components are lin-
early independent. The variance of each component indicates its importance.
The covariance matrix is calculated from the measured data. Let X denote
the matrix of the measurements where each column represents one measured
quantity and each row represents one time slice of all the measurements. Thus,
the covariance matrix C is calculated as

C = X
T
X (2)

where the diagonal values represent the variances of the measurements (the
regressors). The singular values (σ) of the matrix X are equal to the eigen-
values of the covariance matrix C and the corresponding eigenvectors of the
matrix C form the transformation matrix T , each eigenvector representing
one column, such that the principal components P are calculated as

P = XT (3)

An analysis of each component singular value reveals which components can
be neglected without any significant loss of information; generally, it is possible
to omit the components whose sum of singular values share in the sum of all
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singular values is smaller than or equal to the share of measurement-noise in
the measurements.

2.3 Artificial neural network model of the CC

To model the system’s characteristics a feed-forward ANN [21–24] was used.
The neural network consisted of two neurons with a tangent sigmoid transfer
function on the first layer and one neuron with a linear transfer function on
the output layer. Such minimalistic structure reduces the problems of over-
training. The ANN was trained with the Levenberg-Marquadt algorithm. The
network was trained several hundred times to analyse the stability of the result
and to reduce the luck-of-training effect. The network with the highest value
of R2 was used as a final result.

2.4 Fuzzy model of the CC

Fuzzy models are often used for the modelling of non-linear relations [25–
29]; however, their use in pharmacy remains limited. In this study a Takagi-
Sugeno-type fuzzy model was used [30]. The model consists of if-then logical
statements that represent the partial relations between the input and the
output variables of the model. A logical statement consists of a premise or
an if-part that defines a region of input space, and of consequence that is,
in Takagi-Sugeno type, an arbitrary function of the input variables (yi). For
simplicity of interpretation, however, the output functions are normally linear
functions of the input variables. Thus, the Takagi-Sugeno model of a system
with 2 inputs x1 and x2, where each input is divided between two fuzzy sets,
x1 ∈ X11, X12 and x2 ∈ X21, X22, and with outputs yi that are linear functions
of input variables with coefficients kij would look like:

IF(x1 ∈ X11) ∩ (x2 ∈ X21)THEN(y1 = k11x1 + k12x2 + n1) (4)

IF(x1 ∈ X11) ∩ (x2 ∈ X22)THEN(y2 = k21x1 + k22x2 + n2)

IF(x1 ∈ X12) ∩ (x2 ∈ X21)THEN(y3 = k31x1 + k32x2 + n3)

IF(x1 ∈ X12) ∩ (x2 ∈ X22)THEN(y4 = k41x1 + k42x2 + n4)

Each logical statement defines a region of input space and the corresponding
output function. Each input variable is first fuzzified, by calculating the mem-
berships of the fuzzy sets that describe the particular input variable. Next,
the output of each statement is calculated, and then the outputs are aggre-
gated by calculating the weighted sum of the outputs, the weights being the
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corresponding results of the premises.

y =
µ1y1 + µ2y2 + µ3y3 + µ4y4

µ1 + µ2 + µ3 + µ4
(5)

Where µi represents the result of a premise statement.

µ1 = (x1 ∈ X11) ∩ (x2 ∈ X21) = min(x1 ∈ X11, x2 ∈ X21) (6)

µ2 = (x1 ∈ X11) ∩ (x2 ∈ X22) = min(x1 ∈ X11, x2 ∈ X22)

µ3 = (x1 ∈ X12) ∩ (x2 ∈ X21) = min(x1 ∈ X12, x2 ∈ X21)

µ4 = (x1 ∈ X12) ∩ (x2 ∈ X22) = min(x1 ∈ X12, x2 ∈ X22)

2.5 Optimisation

To find the optimal setting for the tableting machine with respect to the pow-
ders’ mechanical properties, the inputs to the model, representing the powders’
properties, must be fixed to the values of the current batch, while the tableting
machine’s settings can be freely changed within the limits of the machine and
the tableting process. As the model represents the effects of the powder char-
acteristics and the tableting machine’s settings on the CC, it is possible to find
the tableting machine settings that result in the CC being a minimum. The
training and simulation of the models as well as the optimisation of the settings
were performed in MATLAB (The MathWorks, Natick, MA, USA) [31]. To
find the optimal setting with respect to the minimum CC, a simplex optimi-
sation method [32] that was implemented in MATLAB’s fminsearch function
was used. Since the simplex optimisation method is programmed to search for
a minimum, the output of the model was used as a criterion function.

3 Results

3.1 Identification of the data’s dimensionality

Using a PCA on all the input data (all the data without a CC) showed that
there are two significant components in the data. Since the measurement noise
could not have been estimated, the significance of principal components was
set to 95% of the sum of all singular values of the measurements. The sum of
singular values of the first two principal components was already larger than
95% of the sum of all singular values, which means that all the input data
could be reduced to two principal components with only 5% loss of informa-
tion in the measured data, indicating that the dimensionality of the problem
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is most likely 2. However, it must be stated that the PCA can be used for
the identification of linearly independent variables, and if the relationship be-
tween the variables is non-linear, this can result in an underestimation of the
dimensionality. Next, we checked if any pair of the measured quantities could
represent a suitable input for the model. The best candidates were the Carr
index and the main compression force. It would also be possible to use the
two most important principal components; however, since they are a combina-
tion of all the measured variables this would represent a problem during the
optimisation procedure. Calculation of the original variable from the princi-
pal component, when only a few of the most significant components are used,
is no longer unique and it would not be possible to calculate the optimal
components from the result. The Carr index is used for identifying the com-
pressibility properties of the powders; however, the problem was that there
were several powder types with the same Carr index, while the CC for those
powders was significantly different. This can either indicate that some neces-
sary information about the system is missing or that the Carr index is not
suitable information for a prediction of the CC for the studied formulation.
First, we added the pre-compression force and tableting speed as the inputs
to the model, but the quality of the model prediction was not improved. This
means that the available information does not solve the problem of the ambi-
guity of the CC with respect to the Carr index. Second, we replaced the Carr
index (CI) with the median of the particle size distribution of the powders.
The median p was calculated as

p =

8∑

i=1
diwimi

8∑

i=1
widi

. (7)

In equation (7) di represents the particle size range, wi is the portion of the
particles within the particle size range, and mi is the median of the particle
size range. This solved the ambiguity problems and the model’s prediction was
significantly better. It must be stressed that p distinguishes between Direct
type and both dry granulated powder type (Slugging and Roller) which is not
the case for the CI. The median of the particle size distribution of powders
from Slugging group are between 0.0657 mm – 0.0541 mm, in Roller group
the values of p are between 0.0632 mm – 0.0557 mm, while the value for the
Direct powder type is much lower: 0.0028 mm (Table 3).

[Table 3 about here.]

Finally, the ANN and the fuzzy models for the CC prediction were identified
with the following inputs: the median of the particle size distribution of the
powder (p), and the main compression force. The tableting speed (v) and pre-
compression force (f) have no significant effect on the capping coefficient in
the selected range of machine settings.
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3.2 Model prediction

Both models (the ANN and the fuzzy) were identified with the same data set.
For validation purposes a variant of the leave-one-out procedure was used;
however, for the final results, all the available data were used for the identi-
fication. The surfaces, describing the relation between the main compression
force, the median of the particle size distribution and the CC, that were iden-
tified with a subset of a complete data set were very similar to the surfaces
identified with complete data set.

3.2.1 ANN model

The identification of the ANN’s parameters resulted in the nonlinear relation
presented in Figure 1. Several repetitions of the ANN’s training produced
similar results.

[Figure 1 about here.]

The quality of the training process was assessed by a calculation of the cor-
relation coefficient, R2, which was 0.7 for the ANN model (Figure 1). The
reliability of the model for the CC prediction was, after considering the relia-
bility of the CC measurement, estimated to be ±0.3.

3.2.2 Fuzzy model

The identified model described the input-output relation with two fuzzy sets
for each linguistic variable on the input, resulting in four logical statements.
The linguistic variable, the median of the particle size distribution was de-
scribed by two sets that were be named, fine and coarse, while the main
compression force was described with the sets that were named high and low.
The naming of the sets was chosen according to the interpretation of the iden-
tified membership functions. The membership functions for the fuzzy sets were
identified with the MATLAB’s function anfis, and are presented in Figure 2.

[Figure 2 about here.]

The logical statements describing the model are as follows:

IF(p ∈ fine) ∩ (F ∈ low)THEN(CC1 = −0.001p + 0.042F − 0.296) (8)

IF(p ∈ fine) ∩ (F ∈ high)THEN(CC2 = −0.011p − 0.225F − 3.75)

IF(p ∈ coarse) ∩ (F ∈ low)THEN(CC3 = −0.067p + 0.003F )

IF(p ∈ coarse) ∩ (F ∈ high)THEN(CC4 = −11.81p − 0.031F + 1.4796)

9



ACCEPTED MANUSCRIPT 

while the output of the fuzzy model is:

CC =
µ1CC1 + µ2CC2 + µ3CC3 + µ4CC4

µ1 + µ2 + µ3 + µ4

(9)

where µi is a value of the fuzzy intersection for the premise of each statement.
The resulting relation for the CC identified with the fuzzy model is presented
in Figure 3.

[Figure 3 about here.]

The quality of the fuzzy identification process was assessed by a calculation of
R2. The coefficient R2 for the fuzzy model was 0.7 (Figure 3). The reliability
of the model for the CC prediction was, after considering the reliability of the
CC measurement, estimated to be ±0.3.

3.3 Optimisation

The optimisation was performed only for the Direct system, since this is the
technologically and economically optimal method for production. When opti-
mising the tableting machine settings, the mechanical properties of the powder
are a-priori known, therefore, only a part of the modelled surface (Figures 1
and 3) at the value of p1 that describes the particle distribution of the actual
powder is relevant. In our models, once the particle distribution is known, the
capping coefficient (CC) becomes only a function of the main compression
force. Figures 4 and 5 show the CC as the function of the main compression
force for the Direct powder type. The difference between the predicted values
of the CC for the selected main compression force obtained from the two mod-
els is a measure of the prediction quality for the selected value of the main
compression force (Figure 6).

[Figure 4 about here.]

[Figure 5 about here.]

[Figure 6 about here.]

In Figure 4 the optimal setting for the main compression force is located below
15kN while in Figure 5 we can observe two optimal regions, at approx. 7kN and
at approx. 15kN. However, in both cases the prediction for CC is not higher
than 0.3 for the main compression force values that are below 18kN. The pre-
compression force (f) and tableting speed (v) have no significant effect on the
CC.
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4 Discussion

The most important issue during modelling is the model validation. The vali-
dation of models that were built exclusively on data (identification) is usually
done by testing the model’s predictive power. In our case a variant of the
leave-one-out procedure was used. Thus, for each identification-validation cy-
cle, 61 randomly chosen tablet types out of 76 were used for the identification,
while the model was validated on the remaining 15 tablet types. Validation
with the leave-one-out method showed that the relationship between the first
principal component of the particle size distribution, the main compression
force, and the CC is relatively simple and that the model is capable of ex-
tracting the general shape of the relation from the data, regardless of how the
identification and validation data were chosen. The only exceptions occurred
when the critical data points were selected for the validation set and were thus
missing from the identification data set. The critical data points are the data
that describe the relationship in areas of the experimental space that were
poorly sampled. Therefore, it is clear that the removal of such points from
the identification data sets also removes all the information about the relation
in such specific areas of the experimental space. The reasons for the occur-
rence of the critical data points are often linked with the technical problems of
studied processes. In our case it was not possible to produce stable tablets for
several settings of the tableting machine. Similarly, the production of powder
mixtures with specific particle size distributions with standard industrial pro-
cedures by targeting the parameters settings during dry granulation is very
difficult. Thus not all the areas of the experimental space were equally sam-
pled. On the other hand, such areas are not interesting as possible operation
settings for the machine and poorer model prediction in the areas is not a
problem (e.g. very low or high main compression force, because they result
in tablets with inappropriate tablet hardness). While comparing the predic-
tion surfaces obtained by ANN and fuzzy model (Figures 1 and 3) differences
can be observed, however in the areas where the number of measurements is
higher the predictions of both models are similar and thus more reliable (Fig-
ure 6). In the areas, where measurements are sparse the predictions of both
models are different, governed rather by the properties of the models than the
properties of the modelled process. That is a clear evidence that some areas
of the experimental space have not been adequately sampled and that the
model can interpolate the relation in the area using mostly the properties of
its mathematical description and not the properties of the measured data.

An additional problem for the model identification was created by combining
the data from the dry granulated powders and the data from the Direct powder
in the same data set. It was discovered in the subsequent studies [19] that the
two types of powders have different compaction characteristics, and therefore,
it would be sensible to make separate models for the dry granulated mixtures
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and the Direct mixture, however, there was not enough existing data for the
identification of two separate models. This discussion can be supported by the
results of the separate study [33] on the studied formulation which indicated
that an interesting phenomenon occurred during tableting and dry granula-
tion. The transformation of a typical crystalline structure of used active ingre-
dient into a more amorphous form occurs during the compression. The extent
of amorphisation depends on physical load, which means that amorphisation
is more intensive at tablets made from dry granulated system, as physical load
of material is higher than in a case of direct tableting. This transformation
favourably influences the stronger bonding between the particles during com-
pression and minimises the capping tendency [19]. The median of the particle
size distribution of the powder p partially solved the problem of combination
of data collected from the two systems. Dry compacted powders have typi-
cally different particle size distributions than Direct powders and using p as
regressor, the two systems could clearly be separated. Selection of regressors
is always very sensitive procedure that is governed by several factors. Ideally,
all the important regressors should have been measured, however, that is ei-
ther not possible or is not cost effective in industrial environment. Complex
compression characteristics of the studied powder mixture nevertheless repre-
sent severe difficulty for combination of the data. The presented approach is
also a test, if routinely measured powder properties can be used as regressors
although they are in some cases only indirectly related to the studied pro-
cess. Combination of data, collected from different powder types, represents
a reduction of measurement costs with not significantly reduced prediction
quality.

5 Conclusion

The models developed in the present study (ANN and fuzzy model) are suit-
able for implementation into the PAT concept and can become an important
part of a QbD approach. The identified input-output relation is specific to the
tableting machine and its equipment used in the study and cannot be gener-
alised to all tableting machines of the same model and equipment. However,
the presented procedure of model identification is generally applicable to all
tableting procedures and machines.

Fuzzy models are not very often used in the field of pharmaceutical technology;
however, they have some significant advantages over ANNs. Most importantly,
it is possible to use other knowledge than just the measured data for their iden-
tification, which reduces the need for large quantities of data when identifying
non-linear relations. The fuzzy model can be built on the basis of piece-wise
linear models that are often used in pharmacy. Thus, we also obtain better
model transparency, which is very important for the understanding of complex
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non-linear relations.

Although the surface of the identified relation is not equal for both models
and, therefore, completely automated setting of the tableting machine, with
respect to a powder batch is not possible, the model represents valuable infor-
mation for the operator, about useful ranges of machine settings with respect
to the physical properties of the powder. Using a model is also more cost
effective than a trial-and-error approach. Optimisation of the tableting ma-
chine’s settings by trial and error produces a relatively large number of faulty
tablets and is very time consuming, especially when the starting settings of
the machine were poorly guessed, and the procedure has to be repeated for
each new powder batch characteristics. In an industrial environment with a
PAT system implemented the development of the model would have to be di-
vided into two stages. First, the data generation for building the model would
be organised as a dedicated experiment that should cover the area of interest
described by machine’s setting parameters and the properties of the powder.
For the modelling, the machine’s settings must be systematically chosen to
cover the whole area of interesting values and tested for several batches. Next,
the model would be validated and further developed with data from large-
scale production. Production monitoring data typically contributes relatively
dense data points from the near-optimal areas of the experimental space that
were not included at the beginning in the experimental plan. The experiments
for modelling purposes are more expensive than the ones for optimisation
with trial and error; however, the model can be used for the prediction of
optimal settings for new batches, which substantially shortens the time for
optimising the machine with respect to a new batch and reduces the number
of faulty tablets. In any case, the models that will be built on the contem-
porary routinely-measured quantities will most likely never be precise enough
for a completely automated adaptation of the machine settings as a compen-
sation for a batch-to-batch differences, but they can serve as a significant
improvement of the trial-and-error procedure.
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Figure 1. Non-linear relation between the main compression force (F), the median
of the particle size distribution of the powder (p) and the capping coefficient (CC).
The circles represent the measurements; the surface represents the prediction of the
ANN model.
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Figure 2. Membership functions for the linguistic variables: a) the median of the
particle size distribution (p), b) the main compression force (F)
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Figure 3. Non-linear relation between the main compression force (F), the median
of the particle size distribution (p) and the capping coefficient (CC). The circles rep-
resent the measurements; the surface represents the prediction of the fuzzy model.
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Figure 4. CC with respect to the main compression force (F) for the Direct powder
as identified with the ANN. The circles represent the measurements; the surface
represents the prediction of the model.
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Figure 5. CC with respect to main compression force (F) for the Direct powder as
identified with the fuzzy model. The circles represent the measurements; the surface
represents the prediction of the model.
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Figure 6. The difference of the predicted CCs between ANN and fuzzy model.
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Table 1
Process parameters for dry granulation on a rotary tablet press (Slugging) and on
a roller compactor (Roller)

Slugging Roller

label speed compression label speed compression

(x1000 tbl/h) force (x1000 tbl/h) force

(kN) (kN)

S26/21 26 21 R12/60 12 60

S100/21 100 21 R20/60 20 60

S26/14 26 14 S16/85 16 85

S100/14 100 14 S20/85 20 85
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Table 2
Combinations of the process parameters settings

Process Main compression Pre-compression Tableting speed

parameters force force (x 1000 tbl/h)

combination (kN) (kN)

1. 21 5 26

2. 21 9 26

3. 14 9 26

4. 14 5 26

5. 18 7.5 40

6. 14 7.5 40

7. 14 9 67.5

8. 14 9 100

9. 21 5 100

10. 21 9 100

11. 7 5 100

12. 7 5 26
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Table 3
Comparison of the Carr index (CI) and the median of the particle size distribution
(p)

Direct R16/85 R20/60 R12/60 R20/85 S26/21 S100/21 S26/14 S100/14

CI 33 27 35 30 33 21 21 20 20

p(mm) 0.0028 0.0586 0.0560 0.0632 0.0557 0.0657 0.0541 0.0559 0.0640
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